

NEO-CLERODANE DITERPENOIDS AND OTHER CONSTITUENTS FROM *BACCHARIS* SPECIES

FRANCESCA FAINI, PATRICIO RIVERA, MANUEL MAHÚ* and MARIANO CASTILLO

Departamento de Química,* Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile

(Revised received 7 April 1987)

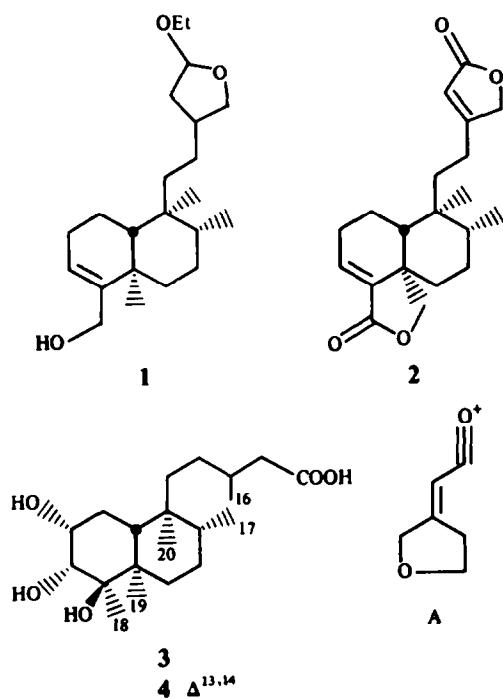
Key Word Index—*Baccharis pedicellata*; *Baccharis marginalis*; Compositae, Astereae; diterpenes; clerodanes.

Abstract—A new *neo*-clerodane dilactone, desoxyarticulin, and dihydrotucumanoic acid, together with other known compounds, were isolated from *Baccharis pedicellata* and *Baccharis marginalis*. The structures of the new compounds were elucidated by spectroscopic methods.

INTRODUCTION

In continuation of our chemical studies of the genus *Baccharis* [1] we analysed *B. marginalis* and *B. pedicellata* from northern and southern Chile. Besides the known diterpene (1) previously isolated from *B. rhomboidalis* [2], the aerial parts of *B. pedicellata* afforded scopoletin, oleanolic acid, erythrodiol, 3,7-dimethylkaempferol, genkwanin, apigenin and a new clerodane dilactone 2 which corresponded to desoxyarticulin. In addition to eriodictyol 7-methyl ether, a new *neo*-clerodane diterpenoid 3 was also isolated from *B. marginalis*. The known compounds were identified by direct comparison with authentic samples and the structures of the new compounds were established by spectroscopic methods.

RESULTS AND DISCUSSION


The IR spectrum of desoxyarticulyn (2), $C_{20}H_{26}O_4$ (HRMS), indicated the presence of two unsaturated lactone groups and an olefinic double bond (see Experimental). Its 1H NMR spectrum showed typical signals for a β -substituted γ -butenolide (a two-proton doublet at δ 4.74 coupled to a triplet at 5.85) as well as signals corresponding to an olefinic β -proton of an α,β -unsaturated lactone group at 6.74, tertiary and a secondary methyl groups at 0.64 and 0.84, respectively, and an AB system at 3.92 and 4.28 which can be assigned to the oxymethylene protons of the remaining lactone group.

Comparison of this data with that of closely related clerodane dilactones previously isolated from other *Baccharis* species [2-6] suggested the structure 2 for this new diterpenoid.

The structure and relative configuration of 2 were ascertained by its ^{13}C NMR spectrum which exhibited chemical shifts for the tertiary and secondary methyl groups at C-9 and C-8, respectively, in agreement with the data of compounds having both of these substituents as alpha on a *trans*-clerodane skeleton [1, 2, 7, 8]. This was further confirmed by the *W*-coupling shown by the 'endo' H-19 in 2 (δ 3.92, *dd*, *J* = 8.1 and 1.8 Hz) indicating an α -axial configuration of the C-19 methylene group in agreement with *trans*-clerodanes having an axial methyl group at C-5 and an axial H-6 [1, 2, 9].

A distinct feature in the mass spectrum of 2 was the base peak at m/z 111, which corresponds to $C_6H_7O_2^+$ (A). The formation of this ion, which originated from the splitting of the side chain, is diagnostic of clerodane diterpenoids with a β -substituted γ -butenolide such as articulin B [6] or deoxymarrubialactone [10]. Compound 1, a mixture of epimers, was identical to an acetal previously isolated from *B. rhomboidalis* [2] except that 1 possessed an ethoxy instead of a methoxy group at C-15. These compounds are artefacts from the extraction procedure.

The structural elucidation of the diterpenic acid 3 isolated from *B. marginalis* was initially hampered by conflicting mass spectral data which showed ions at either m/z 338, 321, 320 and/or 303 as likely $[M]^+$ values in several EIMS determinations. Eventually the composition of 3 as $C_{20}H_{36}O_5$ (m/z 356) was deduced from

CIMS (methane and/or ammonia) which showed strong ions at m/z 374 [$M + 18$]⁺, 357 [$M + 1$]⁺, 338, 321 and 303 indicating the presence of at least three hydroxyl groups.

The ¹³C NMR spectrum of compound 3 showed the presence of two secondary and one tertiary hydroxyl groups at δ 68.4, 77.9 and 76.2, respectively. A signal at δ 174.7 assigned to an unconjugated carboxyl group, together with the remaining 16 carbon signals, confirmed the molecular composition.

The ¹H NMR spectrum of compound 3 showed signals for two secondary and three tertiary methyl groups of a clerodane skeleton at δ 0.76, 0.96, 0.71, 1.04 and 1.22, respectively. The two protons geminal to the secondary hydroxyl groups absorbed at δ 3.98 (*m*, $W_{1/2} = 17$ Hz) and 3.50 (*d*, $J = 3.5$ Hz). In addition, the ¹H NMR spectrum of 3 showed two one-proton double doublets at δ 2.26 ($J = 14.8$ and 6.1 Hz) and 2.09 ($J = 14.8$ and 7.8 Hz) which can be assigned to the C-14 methylene protons.

Comparison of the combined spectroscopic data of compound 3 with that of tucumanoic acid (4), a clerodane diterpenoid previously isolated from *Baccharis tucumanensis* [11], showed significant differences only for the signals corresponding to the side chain. Based on this close similarity of the ¹H and ¹³C NMR spectral data, we conclude that compound 3 represents a clerodane diterpenoid with configurations at C-2/C-5 and C-8/C-10 as in tucumanoic acid. Therefore, we propose stereostructure 3 for this new diterpenoid, namely dihydrotucumanoic acid. The configuration at C-13 was not determined with the available data.

The absolute configuration of compounds 2 and 3 was not established but it very probably corresponds to that shown in the formulae in keeping with their negative molecular rotation values as also shown by related neoclerodanes of known absolute configuration isolated so far from *Baccharis* [2, 4, 9].

Two flavanones, sakuranetin [12] and eriodictyol 7-methylether [13] were also isolated from *B. marginalis* and their structures were confirmed by comparison of their spectroscopic data with those reported in the literature including the hitherto unreported ¹³C NMR data of eriodictyol 7-methylether. This last compound, which until recently was reported as a 'rare' flavanone [14-16], has in fact been detected in several genera of the Compositae [Wollenweber, E., personal communication].

EXPERIMENTAL

Mps: uncorr; ¹H NMR: 500 MHz in CDCl_3 with TMS as int. standard; ¹³C NMR: 100 MHz, CDCl_3 with TMS as int. standard; IR: KBr pellets; MS: inlet, 70 eV.

Baccharis pedicellata DC and *B. marginalis* DC were collected in December in Liquiñe (Valdivia) and in Fray Jorge (La Serena), respectively. Voucher specimens are kept at the Herbarium (M.M.), Facultad de Ciencias, Universidad de Chile.

The aerial parts of *B. pedicellata* (3 kg) were percolated at room temp. with 95% EtOH (3 x 15 l.) for 48 hr. The EtOH extract (525 g) was first partitioned between CHCl_3 and $\text{MeOH-H}_2\text{O}$ (1:9), then the CHCl_3 solubles were partitioned between petrol and $\text{MeOH-H}_2\text{O}$ (9:1) to give 20 g aq. MeOH solubles. This extract was first fractionated by flash CC on silica gel eluted with mixtures of increasing polarity of petrol and EtOAc.

The aerial parts of *B. marginalis* (3 kg) were extracted at room

temp. with CH_2Cl_2 for 12 hr, affording 390 g of a clear syrup. This crude material (100 g) was chromatographed on a silica gel column (400 g) and eluted with mixtures of petrol and EtOAc of increasing polarity. Fractions of 100 ml were taken and combined based upon TLC monitoring. Repeated CC on silica gel of suitable fractions afforded pure compounds.

Compound 1. Oil (1 g). IR $\nu_{\text{max}}^{\text{film}} \text{cm}^{-1}$: 3400, 2925, 1650, 1440, 1370. ¹H NMR (60 MHz, CDCl_3): δ 0.70 (*s*, H-20), 0.77 (*d*, $J = 5$ Hz, H-17), 1.07 (*s*, H-19), 1.1 (*t*, $J = 8$ Hz, $-\text{OCH}_2\text{Me}$), 3.25-3.99 (*m*, 4 H), 4.0 (*br s* H-18), 5.09 and 5.16 (*br, s* H-15), 5.56 (*m*, H-3). ¹³C NMR (62.5 MHz, CDCl_3 , multiplicities obtained by DEPT method): δ 147.9 (*s*, C-4), 122.0 (*d*, C-3), 104.4 and 104.0 (*d*, C-15), 72.7 and 72.0 (*t*, C-16), 63.2 and 62.9 (*t*, $-\text{OCH}_2\text{Me}$), 62.7 (*t*, C-18), 46.2 (*d*, C-10), 39.4 (*t*, C-14), 38.6 (*s*, C-9), 37.7 (*t*, C-11), 37.3 (*s*, C-5), 37.1 (*t*, C-6), 36.3 (*d*, C-13), 36.2 (*d*, C-8), 27.3 (*t*, C-12), 26.6 (*t*, C-2), 26.3 (*t*, C-7), 21.4 (*q*, C-19), 18.3 (*t*, C-1), 18.2 (*q*, C-17), 16.0 and 15.9 (*q*, C-20), 15.4 and 15.3 (*q*, $-\text{OCH}_2\text{Me}$). EIMS (70 eV) m/z (rel. int.): 332 [$M - \text{H}_2\text{O}$]⁺ (0.6), 304 [$M - \text{EtOH}$]⁺ (3), 286 [$M - \text{H}_2\text{O} - \text{EOH}$]⁺ (15), 189 (100).

Desoxartartulin (2). 0.75 g, mp 130-132° (Et_2O). IR $\nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 2930, 1765, 1735, 1620, 990, $[\alpha]_{\text{D}}^{25} -146.4^\circ$, $[\alpha]_{\text{D}}^{546} -177.3^\circ$, $[\alpha]_{\text{D}}^{346} -322.6^\circ$, $[\alpha]_{\text{D}}^{365} -608.7^\circ$. (CHCl_3 , *c* = 1.1), UV $\lambda_{\text{max}}^{\text{MeOH}}$ (*e*) 218 nm (11817). ¹H NMR (500 MHz, CDCl_3): δ 0.64 (*s*, H-20), 0.84 (*d*, $J = 6.1$ Hz, H-17), 3.92 (*dd*, $J = 8.1$ Hz, H-19), 4.28 (*d*, $J = 8.1$ Hz, H-19'), 4.74 (*d*, $J = 1.6$ Hz, H-16), 5.85 (*t*, $J = 1.6$ Hz, H-14), 6.74 (*dd*, $J = 7.3$, 2.0 Hz, H-3). ¹³C NMR (100 MHz, CDCl_3 , multiplicities obtained by DEPT method): δ 173.3 (*s*, C-15), 170.0 (*s*, C-13), 169.1 (*s*, C-18), 138.4 (*s*, C-4), 135.4 (*d*, C-3), 115.2 (*d*, C-14), 73.0 (*t*, C-19), 71.6 (*t*, C-16), 48.0 (*d*, C-10), 45.4 (*s*, C-5), 38.7 (*s*, C-9), 36.5 (*d*, C-8), 34.4 (*t*, C-11), 34.3 (*t*, C-6), 27.6 (*t*, C-7), 27.6 (*t*, C-2), 22.0 (*t*, C-12), 19.6 (*t*, C-1), 17.5 (*q*, C-20), 15.5 (*q*, C-17). EIMS (70 eV) m/z (rel. int.): 330.1849 [M]⁺ (calc. for $\text{C}_{20}\text{H}_{26}\text{O}_4$: 330.1830) (19), 300 [$M - \text{CH}_2\text{O}$]⁺ (51), 220.1466 (calc. for $\text{C}_{14}\text{H}_{20}\text{O}_2$: 220.1462) (30), 219 (19), 189 (16), 187.1145 (calc. for $\text{C}_{13}\text{H}_{15}\text{O}$: 187.1122) (45), 161 (34), 111.0469 (calc. for $\text{C}_6\text{H}_7\text{O}_2$: 111.0446) (100), 105 (60).

Scopoletin, oleanolic acid and erythrodiol were identified by comparison with authentic samples. 3,7-Dimethylkaempferol, 3-methylkaempferol, genkwanin, apigenin were identified by comparison of their spectroscopic properties with those reported in the lit.

Dihydrotucumanoic acid (3). 5.5 g, mp 190-191° (Me_2CO). $[\alpha]_{\text{D}}^{25} -16.0^\circ$, $[\alpha]_{\text{D}}^{546} -17.0^\circ$, $[\alpha]_{\text{D}}^{346} -19.0^\circ$, $[\alpha]_{\text{D}}^{365} -12.0^\circ$, $[\alpha]_{\text{D}}^{345} -13.0^\circ$ (MeOH; *c* 0.1). IR $\nu_{\text{max}}^{\text{KBr}} \text{cm}^{-1}$: 3500, 3300, 3000-2850, 1700, 1150. ¹H NMR (500 MHz, CDCl_3 -DMSO-*d*₆): δ 0.71 (*s*, H-20), 0.76 (*d*, $J = 5.7$ Hz, H-17), 0.96 (*d*, $J = 7.6$ Hz, H-16), 1.04 (*s*, H-19), 1.22 (*s*, H-18), 1.55 (*br t*, 1 H), 1.70-1.85 (*m*, 2 H), 2.10 (*dd*, $J = 14.8$, 7.8 Hz, H-14), 2.25 (*dd*, $J = 14.8$, 6.0 Hz, H-14'). 3.50 (*d*, $J = 3.5$ Hz, H-3), 3.94 (*m*, $W_{1/2} = 17$ Hz, H-2). ¹³C NMR (100 MHz, CDCl_3 -DMSO-*d*₆, multiplicities obtained by DEPT method): δ 174.7 (*s*, C-15), 77.9 (*d*, C-3), 76.2 (*s*, C-4), 68.4 (*d*, C-2), 41.3 (*t*, C-14), 40.5 (*s*, C-5), 37.9 (*s*, C-9), 37.9 (*d*, C-10), 35.7 (*d*, C-8), 35.6 (*t*, C-11), 31.4 (*t*, C-12), 30.5 (*d*, C-13), 29.0 (*t*, C-6), 26.2 (*t*, C-1), 25.3 (*t*, C-7), 21.1 (*q*, C-18), 19.6 (*q*, C-19), 18.1 (*q*, C-16), 16.7 (*a*, C-20) and 15.9 (*q*, C-17). EIMS m/z (rel. int.): 338 [$M - 18$]⁺ (13), 320 (11), 303 (8), 241 (18), 223 (31), 205 (44), 137 (68), 123 (100), 109 (43). CIMS (ammonia): 374 [$M + 18$]⁺ (100), 357 [$M + 1$]⁺ (32), 338 [$M - \text{H}_2\text{O}$]⁺ (36), 320 (28), 303 (31), 258 (18), 223 (21), 123 (18).

Eriodictyol 7-methylether. 8.5 g ¹³C NMR (100 MHz, CDCl_3 , multiplicities obtained by DEPT method: δ 196.2 (C-4), 167.9 (C-8a), 167.8 (C-7), 164.0 (C-5), 145.3 (C-3'), 145.3 (C-4'), 129.9 (C-1'), 118.1 (C-6), 115.5 (C-5'), 115.4 (C-2'), 103.0 (C-4a), 94.8 (C-8), 94.0 (C-6), 79.2 (C-2), 55.6 (OMe), 42.0 (C-3). Eriodictyol 7-methylether was further identified by direct comparison with an authentic sample (TLC, mp, UV, ¹H NMR and MS [13]).

Acknowledgements—The authors are grateful to Prof. E. Wollenweber, Institut für Botanik, Technische Hochschule, Darmstadt for a sample of eriodictyol 7-methylether and also to Dr D. B. MacLean, Chemistry Department, McMaster University, Canada, for NMR and MS measurements. This work was supported by DIB (Universidad de Chile), FONDECYT and the Organization of American States. One of us (P.R.) thanks PNUD-UNESCO CHI-84/006.

REFERENCES

1. Givovich, A., San-Martin, A. and Castillo, M. (1986) *Phytochemistry* **25**, 2829.
2. San-Martin, A., Rovirosa, J., Labb  , C., Givovich, A., Mah  , M. and Castillo, M. (1986) *Phytochemistry* **25**, 1893.
3. Bohlmann, F., Kramp, W., Grenz, M., Robinson, H. and King, R. M. (1981) *Phytochemistry* **20**, 1907.
4. Herz, W., Pilotti, A. M., S  derholm, A. C., Shuhama, I. K. and Vichnewski, W. (1977) *J. Org. Chem.* **42**, 3913.
5. Bohlmann, F., Kramp, W., King, R. M. and Robinson, H. (1979) *Phytochemistry* **18**, 1011.
6. Stapel, G., Menssen, H. G. and Snatzke, G. (1980) *Planta Med.* **38**, 366.
7. Luteijn, J. M., Van Veldhuizen, A. y de Groot, A. (1982) *Org. Magn. Reson.* **19**, 95.
8. Sharma, S. C., Tandon, J. S., Porter, B., Raju, M. S. and Wenkert, E. (1984) *Phytochemistry* **23**, 1194.
9. Gambaro, V., Chamy, M. C., Garbarino, J. A., San-Martin, A. and Castillo, M. (1986) *Phytochemistry* **25**, 2175.
10. Popa, D. P., Salei, L. A. (1976) *Khim. Prir. Soedin.* **3**, 393; *chem. abstracts* (1976) **85** 124188s.
11. Rossomando, P. C., Giordano, O. S., Espi  neira, J. and Joseph-Nathan, P. (1985) *Phytochemistry* **24**, 787.
12. Assumpcao, R. M. V., Silva, K. S. M. and Gotlieb, O. R. (1968) *An. Acad. Brasil. Cienc.* **40**, 297.
13. Giordano, O. S. y Guerreiro, E. (1973) *An. Asoc. Quim. Argent.* **61**, 161.
14. Wollenweber, E. (1981) *Z. Naturforsch.* **36**, 604.
15. Proksch, P., Budzikiewicz, H., Tanowitz, B. D. and Smith, D. (1984) *Phytochemistry* **23**, 679.
16. Charle, W. D. and Wollenweber, E. (1985) *Phytochemistry* **24**, 1122.